所在位置:首页 > 研究成果 > 研究报告

【华信研究院】新材料产业:新材料三大细分领域发展情况

时间:2022-07-18

一、行业发展概况

(一)轻量化材料

1、碳纤维

碳纤维材料以其出色的性能被用于航空航天、风电、体育休闲、汽车等多个领域,是新材料领域用途最广泛、市场化最高的材料,被誉为“新材料之王”。全球碳纤维市场需求近年快速增长,我国也抓住机遇,发展成为全球第二大碳纤维生产国。但是,我国碳纤维产业相比起国外还存在企业产能利用低、高端产品少、应用开发难的问题,下游行业还是严重依赖进口碳纤维产品。在当前国际环境下,实现碳纤维规模生产和应用开发的双自主化,是提升我国国防和制造业实力,保障供应链稳定的关键。


(1)技术概述

碳纤维(Carbon Fiber)是由聚丙烯腈(PAN)(或沥青、粘胶)等有机纤维在高温环境下裂解碳化形成的含碳量高于90%的碳主链结构无机纤维,作为高性能材料产于上世纪60年代。碳纤维具备出色的力学性能和化学稳定性:作为目前实现大批量生产的高性能纤维中具有最高比强度(强度比密度)和最高比刚度(模度比密度)的纤维,碳纤维是航空航天、风电叶片、新能源汽车等具有轻量化需求领域的理想材料。耐腐蚀、耐高温、膨胀系数小的特点使其得以作为恶劣环境下金属材料的替代;另外,导电导热特性拓展了其在通讯电子领域的应用。


按照每束碳纤维中单丝根数,碳纤维一般分为小丝束和大丝束两个类别。小丝束性能更优但价格较高,一般用于航天军工等高科技领域,以及高端体育用品;大丝束成本较低,往往应用于基础工业领域,包括土木建筑、交通运输和能源设备等。


(2)全球主要公司、市场份额及其产能

碳纤维产业作为资本密集型和技术密集型产业,全球碳纤维核心生产技术集中在日本、美国和欧洲。中国、韩国属于近年来快速增长的产业区域。


企业方面,日本东丽(Toray)在收购美国卓尔泰克后从技术和产能上都明显领跑业界,拥有世界约30%的产能,是绝对的龙头企业。其他主要的海外厂商包括日本东邦(Toho/Teijin)、日本三菱丽阳(MCCFC)、美国赫氏(Hexcel)、德国西德里(SGL)、台塑(FPC)等。中国作为世界第二大碳纤维生产国,也涌现了诸如吉林碳谷、中复神鹰、光威复材等碳纤维生产企业,但总体来说低端产品较多,产能较为分散,在高性能碳纤维领域少有建树,离行业巨头们都还有较大距离。


2、铝合金汽车车身板

铝合金是工业中应用最广泛的合金,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。在国家节能减排的政策导向下,汽车行业仅仅通过设计优化汽车能耗已很难达到国家越来越严格的燃油排放标准,因此汽车的轻质化是行业确定的发展方向。铝合金是汽车行业轻量化的主力材料,其中铝合金车身板(Automotive body sheet, ABS)应用在汽车最重的车身,是实现轻量化目标的关键材料。目前我国已逐渐打开国产车用铝合金市场甚至部分企业已经开始出口,其中国内企业和外企在国内工厂均有生产。铝合金车身板的国产化是我国汽车产业提高竞争力,帮助国家实现节能减排目标的关键。


(1)技术概述

铝合金是铝和镁、铜、硅、锰各种金属元素的产物,在和钢结构保持相同强度的条件下,依旧比钢架构50%。铝合金塑性好,可加工成各种型材,且具有优良的导电性、导热性和抗蚀性。铝是自然界含量最多的金属元素,原材料矿物方便取得。目前铝材工业上广泛使用,使用量仅次于钢。且铝合金的回收率达到80%,对环境的破坏较小,是理想的轻量化材料,被广泛应用于飞机、汽车、火车、船舶等制造工业。


以中国为例,中国规划2035年国内乘用车平均油耗由2019年的5.6L/km下降到2L/km,汽车碳排放总量减少20%。


汽车轻量化作为有效优化汽车能耗的方法,成为了行业节能减排的重点发展方向。依照世界铝业协会的数据,汽车每减少10%的重量,可减少6%-8%的排放;每减少100kg重量,汽车百公里燃油消耗量能减少0.4-0.5升,铝合金成了各国汽车制造商满足环保政策采用的主要减重手段之一。


汽车用铝合金主要分为四种:铸造铝材、锻造铝材、挤压铝材和压延铝材。使用最多的是铸造铝材,占比超过70%。铝合金车身板属于压延铝材,约占汽车用铝量的10%-15%,可用于生产如引擎盖等多个汽车车身的大型部件。


中国是世界上最大的原铝和铝合金生产国。目前我国在汽车铝合金零部件的生产使用上已经形成规模,但铝合金车身板的研发生产进步缓慢,严重依赖进口。汽车车身约占汽车总重量的30%,是汽车中重量最大的部件,使用铝合金板代替传统使用的钢板生产汽车内外板最多可使整车减重10%左右,可见铝合金车身板是汽车轻量化重要的部件。


(2)全球主要公司、市场份额及其产能

目前全球范围内汽车铝板有效产能主要分布在欧洲,北美和日本。规模较大的公司主要有:欧洲海德鲁铝业公司、年邦铝业(AMAG);北美美国铝业公司、肯联铝业(Constellium)、诺贝丽斯公司、特殊合金公司;日本神户钢铁、日本联合铝业(UACJ)等公司。


美国企业经过多年发展和全球化布局的优势,逐渐在市场取得领先地位。美国几大公司在世界各大汽车产地投资开设汽车铝板工厂,利用供应链优势占领市场。欧洲企业在市场竞争中举步维艰,挪威海德鲁公司已宣布于2022年3月份出售了自己的压延铝产线;日本企业则选择了拥抱美国企业,合作建立工厂,2017年神户钢铁还爆发了造假事件,市场地位进一步下降。


中国企业自2013年来陆续开始对汽车铝板进行研发,目前已小范围供货国内外车企。但目前国内生产厂家90%的产量为内板,生产技术较为复杂的外板产能以合资厂商诺贝丽斯、神户钢铁为主。高性能汽车铝板产能的提升是增强我国企业竞争力的关键。


(二)航空航天材料

1、聚酰亚胺

聚酰亚胺(PI)材料在航空航天、高端电子元器件、半导体等多个尖端领域有着很高的应用价值,在材料更新迭代方面扮演着重要的角色。目前,全球聚酰亚胺市场需求不断增长,但很多高端PI产品、特种功能PI产品的大批量生产仍被少数发达国家垄断,相关生产技术被严格保护。目前,我国已在中低端PI薄膜、PI纤维领域实现大规模生产,并在电工级PI薄膜领域获得全球竞争力。但是,高端PI薄膜以及其他高端PI产品仍面临“卡脖子”或产能不足的问题,导致明显的结构性供需失衡。突破高端聚酰亚胺产品的大规模量产对我国制造业升级、军备升级换代、自主可控有着重要意义。


聚酰亚胺(PI)是综合性能突出的有机高分子材料,被誉为“二十一世纪最有希望的工程塑料之一”。该材料的使用温度范围很广,能在-200~300℃的环境下长期工作,短时间耐受400℃以上的高温。聚酰亚胺没有明显熔点,是目前能够实际应用的最耐高温的高分子材料。同时,该材料还具有高绝缘强度、耐溶、耐辐照、保温绝热、无毒、吸声降噪、易安装维护等特点。当前,聚酰亚胺已广泛应用在航空航天、船舶制造、半导体、电子工业、纳米材料、柔性显示、激光等领域。根据具体产品形式的不同,聚酰亚胺可以细分为PI泡沫、PI薄膜、PI纤维、PI基复合材料、PSPI等多种产品。


PI薄膜是最主要的聚酰亚胺产品,目前这一领域呈现寡头垄断的竞争格局,90%以上的市场份额掌握在美国、日本、韩国生产商的手中。发达国家行业寡头对PI薄膜生产技术、生产工艺进行严格保护。杜邦(Dupont)、日本宇部兴产(Ube)、钟渊化学(Kaneka)、日本三菱瓦斯MGC、韩国PI尖端素材(原SKPI)以及中国台湾地区达迈科技(Taimide)是当前全球聚酰亚胺薄膜的主要生产商。生产高性能PI膜对设备定制、制作工艺、技术人才等方面要求苛刻,且产品具备定制化、差异化的特征。生产商需要丰富的经验积累和充足的研发投入才能产出高性能PI膜。因此,高性能、高价值量PI膜的进入壁垒很高。


其他聚酰亚胺产品市场与PI薄膜市场类似,主要市场份额掌握在少数企业手中,且以海外知名公司为主,呈现寡头竞争的市场格局。其中,光敏型聚酰亚胺的生产基本被日本和美国企业垄断。


2、碳化硅纤维

碳化硅纤维(SiC纤维)是继碳纤维之后发展的又一种新型高性能纤维,属国家战略性新兴材料。当前,采用碳化硅纤维制造的陶瓷基复合材料在航空发动机领域的应用价值非常显著,西方发达国家已成功应用此类产品改良航空发动机多个部件,提升了航空发动机的效率。随着碳化硅纤维性能进一步改善,生产工艺逐步优化,未来该材料有望在更多航空发动机部件上应用,并有望扩展至其他高价值民用领域,潜在市场空间广阔。


SiC纤维是一种以有机硅化合物为原料,经纺丝、碳化或气相沉积而制得的具有β-碳化硅结构的无机纤维,属于陶瓷纤维一类。自20世纪80年代SiC纤维问世以来,SiC纤维已有三次明显的产品迭代,其耐热性与强度都得到了明显增强。目前,第三代碳化硅纤维的最高耐热温度达1800-1900℃,耐热性和耐氧化性均优于碳纤维。材料强度方面,第三代碳化硅纤维拉伸强度达2.5~4GPa,拉伸模量达290~400GPa,在最高使用温度下强度保持率在80%以上。目前,碳化硅纤维的潜在应用包括耐热材料、耐腐蚀材料、纤维增强金属、装甲陶瓷、增强材料等方向,在航空航天、军工装备、民用航空器等领域有较高使用价值。


SiC纤维的一个主要用途是制作SiC复合陶瓷基材料(CMC材料)。这种材料是在SiC陶瓷基体的基础上,将SiC纤维作为增强材料引入基体中制作而成的,是一种尖端复合材料。CMC材料是高温合金的替代品,相比于高温合金具有更强的耐热性、抗氧化性,同时具有更低的密度。在航空发动机领域,应用CMC材料可以进一步提高涡轮进气温度,进而提升发动机效率。同时,CMC材料降低了结构密度,实现了轻量化,提升了航空器的推重比。因此,SiC复合陶瓷基材料被认为是临近空间飞行器、可重复使用航天器的热结构部件的理想材料,其研发和应用得到了主流机构与航空发动机制造商的高度重视。


目前,西方发达国家生产商已将CMC材料应用于多个航空发动机热端部件,主要包括发动机尾喷口、涡轮静子叶片、喷管调节片、燃烧室火焰筒等部位。但是,由于CMC材料具有脆性易断、加工性弱的缺点,其在涡轮转子、高压涡轮领域的运用仍在探索中。


1975年,日本东北大学Yajima(矢岛圣使)教授使用聚碳硅烷作为原材料,利用先驱体转化法,成功制作出连续的无机SiC纤维。20世纪80年代末,宇部兴产公司(Ube Industries)和日本碳素公司(Nippon Carbon)先后实现了SiC纤维的工业化生产,SiC纤维的大规模生产在日本率先展开。


经历了几十年的发展,美日等发达国家已经形成了多个代际的SiC纤维产品体系,并推出了高性能、高纯度、高价值的第三代SiC纤维产品。目前,日本碳素公司(Nippon Carbon)和宇部兴产公司(Ube Industries)的SiC纤维产品产量最大,能达到百吨级。


连续碳化硅纤维在航空航天、国防军工等领域有极高的应用价值,属于军事敏感物资。因此,西方发达国家对碳化硅纤维产品、技术实施严格的保密封锁,中国只能依靠自主研发实现高性能碳化硅纤维的国产化。突破碳化硅纤维新材料的大规模量产,是我国实现空军现代化、高性能航空发动机国产化的重要一环。考虑到国防安全、自主可控的战略意义,以及我国航空制造、空军装备的广阔升级空间,国产高性能碳化硅纤维的潜在需求巨大。当前,在建军百年奋斗目标的指引下,国防、军队现代化进程有望加速推进,我国碳化硅纤维行业将迎来历史性的发展机遇。


我国对高性能连续SiC纤维产品的研究始于上世纪80年代,经过30余年的发展,目前已经实现了多项关键技术的实质性突破。截至目前,中国国产SiC纤维产品性能已接近国外第二代SiC纤维产品。


(三)半导体材料

1、硅片

硅片位于半导体产业链上游,是半导体器件和太阳能电池的主要原材料,主要应用于光伏和半导体两个领域,下游需求近年来不断增长。分领域来看,光伏用硅片的产能大多集中在我国,中环、隆基等龙头公司实力强劲,生产技术水平全球领先;半导体硅片相对于光伏用硅片而言制作工艺更为复杂,应用场景也更多,市场价值更高,然而我国的半导体硅片产业起步晚,发展水平较为落后,全球市场被日本厂家垄断,市场主流的12寸硅片在我国仍未达到规模化生产,严重依赖进口,以沪硅产业为代表的国内企业正努力打破技术壁垒,国产化替代的空间广阔。


(1)硅片下游应用广泛,是半导体器件和光伏电池的重要材料

硅是一种良好的半导体材料,耐高温、抗辐射性能较好,特别适宜制作大功率器件。以硅为原材料,通过拉单晶制作成硅棒,然后进行切割就形成了硅片。硅片主要用于半导体、光伏两大领域,半导体硅片在晶体、形状、尺寸大小、纯度等方面要比光伏用晶片要求更高,光伏用硅片的纯度要求硅含量为4N-6N之间(99.99%-99.9999%),半导体用硅片在9N-11N(99.9999999%-99.999999999%)左右,制作工艺更加复杂,下游应用也更为广泛。半导体用硅片位于产业链的最上游,主要应用于集成电路、分立器件及传感器,是制造芯片的关键材料,影响着更下游的汽车、计算机等产业的发展,是半导体产业链的基石。


(2)光伏用硅片:我国产能领先,龙头企业实力强劲

光伏产业是国家战略新兴产业之一,光伏用硅片位于光伏产业链的上游,近年来其需求在不断上升,据CPIA预测,全球光伏市场的年装机量在2021年将会达到150GW,具有广阔的市场和发展前景。我国是世界上最大的光伏用单晶硅片的生产国,据中国有色金属工业协会硅业分会统计,截至2019年底,我国单晶硅片产能为115GW,占全球的97.6%。龙头企业隆基和中环占据国内单晶硅片50%以上的市场份额,并在持续扩张产能的进程之中,新势力公司上机数控和京运通也在加速扩产。


2、碳化硅(SiC)

碳化硅是第三代半导体材料,具有非常优越的性能,是功率器件的重要原材料,近年来各国都投入大量人力物力发展相关产业。碳化硅行业门槛比较高,我国生产技术水平及较为落后,目前产业格局呈现美国独大的特点,仅Cree一家公司就占据导电型碳化硅晶片全球62%的份额。碳化硅市场的发展前景广阔,近年来不断在电动车、光伏、轨道交通、智能电网等领域渗透,拥有强劲的下游需求,市场规模不断扩大。我国也在对碳化硅全产业链进行布局,2022年来相关专利数量不断上升,以天科合达为代表的晶片生产厂商的市占率也在逐年提高,我国的碳化硅产业的未来发展空间较大。


碳化硅是目前发展最成熟的宽禁带半导体材料,也是第三代半导体材料的代表材料。碳化硅材料具有很多优点:化学性能稳定、导热系数高、热膨胀系数小、耐磨耐高压。采用碳化硅材料的产品,与相同电气参数的产品比较,可缩小50%体积,降低80%能量损耗,由于这些特性,世界各国对碳化硅材料非常重视,纷纷投入大量精力促进相关产业发展,国际上的各大半导体巨头也都投入巨资发展碳化硅器件。随着技术工艺的成熟、制备成本的下降,应用在各类功率器件上,近年来碳化硅功率器件在新能源汽车领域渗透率持续上升,是未来新能源、5G通信领域中SiC、GaN器件的重要原材料。


碳化硅生产过程分为单晶生长、外延层生长及器件制造三大步骤,对应的是产业链衬底、外延、器件与模组三大环节。碳化硅行业存在较高的技术门槛,研发时间长,美国、欧洲、日本等国家与地区多年来不断改良碳化硅单晶的制备技术、研发制造相关设备,在碳化硅产业链各环节都具有较大优势。行业巨头CREE实力强劲,其旗下的Wolfspeed拥有垂直一体化的生产能力,在功率和射频器件市场具有领导地位;欧洲的英飞凌、意法半导体等公司拥有完整的碳化硅生产以及应用产业链;日本的罗姆半导体、三菱电机等在碳化硅功率模块开发方面领先;近年来代工企业也在增多,大陆与中国台湾地区企业逐步进入,代工企业包括大陆的三安集成、中国台湾地区的汉磊科技等。


目前,碳化硅产业格局呈现美国独大的特点。以重要产品导电型碳化硅晶片为例,2018年美国占有全球产量的70%以上,仅CREE一家公司就占据62%的市场份额,剩余份额大部分被日本和欧洲的其他企业占据,中国企业仅占1.7%的份额。


3、高纯金属溅射靶材

溅射靶材是集成电路的核心材料之一,近年来向着高溅射率、高纯金属的方向发展。其下游应用场景主要包括半导体、面板、太阳能电池,随着消费电子终端市场的发展与完善,高纯金属溅射靶材的下游需求不断上升,2013-2020年全球靶材市场规模的复合增速达14%,市场规模逐渐扩大。溅射靶材的行业壁垒较高,美国与日本企业掌握核心技术,垄断全球市场。我国的溅射靶材行业起步较晚,较为落后,但市场需求全球领先,国产替代空间大。国内企业正在逐渐突破技术瓶颈,为打破美日垄断高端靶材市场的不利局面而努力。


溅射是制备薄膜材料的重要技术之一,溅射是指利用离子源产生的离子,在真空中经过加速聚集而形成高速度能的离子束流,轰击固体表面,离子和固体表面原子发生动能交换,使固体表面的原子离开固体并沉积在基底表面,被轰击的固体是用溅射法沉积薄膜的原材料,称为溅射靶材。集成电路中单元器件内部的介质层、导体层甚至保护层都要用到溅射镀膜工艺。


超高纯金属及溅射靶材是电子材料的重要组成部分,溅射靶材产业链主要包括金属提纯、靶材制造、溅射镀膜和终端应用等环节。靶材制造和溅射镀膜环节是整个溅射靶材产业链中的关键环节,对工艺水平要求高,存在较高的进入壁垒。靶材如今向着高溅射率、晶粒晶向控制、大尺寸、高纯金属的方向发展。现在主要的高纯金属溅射靶材包括铝靶、钛靶、钽靶、钨钛靶等,是制备集成电路的核心材料。


国外知名靶材公司在靶材研发生产方面已有几十年的沉淀。全球范围内,溅射靶材产业链各环节参与企业数量基本呈金字塔型分布,高纯溅射靶材制造环节技术门槛高、设备投资大,具有规模化生产能力的企业数量相对较少,主要分布在美国、日本等国家和地区。目前全球溅射靶材市场内主要有四家企业,分别是JX日矿金属、霍尼韦尔、东曹和普莱克斯,市场份额占比分别为30%、20%、20%和10%,合计垄断了全球80%的市场份额。其中最高端的晶圆制造靶材市场基本被这四家公司所垄断,合计约占全球晶圆制造靶材市场份额的90%,JX日矿金属规模最大,占全球晶圆制造靶材市场份额比例为30%。


二、行业发展趋势


(一)轻量化材料

1、碳纤维全球产能规模以及需求预期

2020年,全球碳纤维运行产能为171650吨,相比2019年增加了16750吨,增长率10.8%。美国、中国、日本承担了主要的产能,分别占据21.7%、21.1%、17.0%。当前各大生产商大约还有8万吨/年未建设完成的扩产计划,这也体现了厂家对行业前景的乐观预期。


需求层面,碳纤维市场的四大应用行业是航空航天、风电叶片、体育休闲、汽车,2020年四大下游行业碳纤维需求量的占比超过70%,产值占比超过76%。


自2015年来,行业估计世界碳纤维需求量一直保持约12%的增长,但受疫情影响2020年全球对碳纤维需求量总计10.7万吨,相比2019年仅增长3%。总销售金额约26.15亿美元,同比下降8.8%,主要原因在于疫情导致航空业重挫影响了高价值的高性能碳纤维销售。风电领域则成为行业维持增长的主要推动力,碳纤维需求量在疫情下依然保持了20%的年增长。


短期来看,2021年世界航空业的恢复和风电设备的大量铺设能够让碳纤维市场回到快速增长的通道。长期来看,航空业需要消化2020年多余的产能,风电将继续作为未来碳纤维市场增长的主推动力。2020年10月,全球400余家风能企业代表共同发布《风能北京宣言》,规划2020-2025年年度新增装机5000万千瓦以上。在各大风电厂家都扩产的背景下,目前碳纤维在风电机中的应用还未大规模铺开,仅世界风电巨头维斯塔斯一家形成了规模化应用。随着其他风电企业对碳纤维符合材料的应用开发,风电行业对碳纤维的需求可能会成倍增长。预计到2025年,世界碳纤维总需求量将超过20万吨,折合年增长率13.3%。


碳纤维需求增长趋势

图片

资料来源:公开资料


此外,碳纤维在其他应用领域还有很大潜力可以挖掘。以主要竞争对手铝合金为例,碳纤维和铝合金同属替换钢材的轻量化材料,碳纤维在强度、化学稳定性等性能上都占优,并且在飞机部件、高性能汽车车架、自行车架等产品相比铝合金都有更好的表现。但受累于高昂的价格,目前碳纤维应用大多局限于高附加值产品。2016年世界铝材年需求量约是碳纤维的500-600倍,行业产值约为50倍,且受益于汽车工业的发展铝材需求近年也在快速增长。随着技术的进步压低碳纤维的成本,未来碳纤维还有广阔的市场空间。


2、全球汽车铝板带产能规模以及未来对该材料的需求预期

2020年全球汽车铝板带年产能约在390万吨附近,集中在北美洲、欧洲和亚洲地区,中国产能占全球比重约26.2%,年产能约102万吨,居于世界第二,产能多为淘汰产能和落后产能。从产量和排产计划看,订单少,需求量低,产品也大多处于研发和验证阶段(部分产品不达标因此接单量较低),2020年综合开工率仅20%,产能利用率严重偏低。


在汽车轻量化需求增长的大趋势下,汽车用铝需求有很大增长空间。目前汽车产业用铝量在整车重量占比20%-40%,单车耗铝量120-200公斤。当前燃油车销量占据市场超过90%的份额,是汽车铝材消耗的主力。未来新能源车市场将成为汽车用铝的主要增量市场:多国政府表示希望在2025年将新能源车市场占有率提升至20%及以上,而纯电动车作为主力新能源车品种,平均单车耗铝量比燃油车高约30kg。从2018年到2020年,全球新能源车销量从约200万辆跃升至331万辆,预计到2025年能够增长至千万辆级别。


汽车铝板是汽车用铝部件中增长最快的部分:2015至2020年,北美汽车平均用铝量增长了约18%,期间汽车“四门两盖”平均用铝量增长高达163%。其中,北美汽车引擎盖铝化率从2015年的50%升至2020年的63%,2025年铝化率可能超过80%;车门的铝化率从2015年的5%升至2020年的21%,至2025年可能超过30%。在需求端的良好预期下,预计至2025年世界车用铝板需求能够从现在的250万吨增至超过400万吨。


【华信研究院】新材料产业:新材料三大细分领域发展情况
  • 报告目录

    【华信研究院】新材料产业:新材料三大细分领域发展情况
-->